Pope John Paul II State School of Higher Education in Biała Podlaska
Państwowa Szkoła Wyższa im. Papieża Jana Pawła II w Białej Podlaskiej
CORRESPONDING AUTHOR
Joanna Kisielińska
dr hab. prof SGGW Joanna Kisielińska, Pope John Paul II State School of Higher Education
in Biała Podlaska, The Faculty of Economics and Technical Sciences, Sidorska St 95/97, 21-500 Biała Podlaska, Poland; phone: +48 691-712-782
Subject and purpose of work: Research targeted at verification of effectiveness of the selected Polish models of forecasting bankruptcy of an enterprise has been presented within the article. Materials and methods: Within the research financial data from the years 2009-2012 have been used, obtained from 110 companies out of which 55 are companies which underwent bankruptcy and 55 which did not. Discriminant analysis as well as logit models and method of aggregated assessment have been applied. Results: Due to the frequent low quality of classification obtained via single models a method which may be called as aggregated method was suggested, which is based on the assessment of situation of a single unit on indications of the majority of models. This method allowed to increase the correctness of identification up to 87,3%. The share of incorrect identifications is rather high and amounts to 12,7%. Conclusions: The author is of the opinion that the assessment of situation of an entity may not be based solely on the indications of models of bankruptcy prognosis. This assessment may be treated solely
indicatively, especially when consequences of a decision made on this basis (i.e. decision on granting a loan) may significantly impact further position of such entity and its surroundings.
REFERENCES(21)
1.
Altman E. I. (1968), Financial Ratios, Discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, Vol. 23, No. 4, September, s. 589-609.
Gajdka J., Stos D. (2003), Ocena kondycji finansowej polskich spółek publicznych w okresie 1998-2001, W: D. Zarzecki (red.) Czas na pieniądz, Zarządzanie finansami, Mierzenie wyników i wycena przedsiębiorstw. t. 1, Wydawnictwo Uniwersytetu Szczecińskiego, Szczecin, s. 156–157.
Gasza R. (1997), Związek między wynikami analizy typu Altmana a kształtowaniem się kursów akcji wybranych spółek giełdowych w Polsce. Rezultaty badań najstarszych spółek giełdowych w latach 1991-1995. Bank i Kredyt, nr 3, s. 59–62.
Gruszczyński M. (2003), Modele mikroekonometrii w analizie i prognozowaniu zagrożenia finansowego przedsiębiorstw. Instytut Nauk Ekonomicznych Polskiej Akademii Nauk, nr 34.
Hamrol M., Chodakowski J. (2008), Prognozowanie zagrożenia finansowego przedsiębiorstwa. Wartość predykcyjna polskich modeli analizy dyskryminacyjnej. Badania Operacyjne i Decyzje, nr 3, s. 17-32.
Hołda A. (2001), Prognozowanie bankructwa jednostki w warunkach gospodarki polskiej z wykorzystaniem funkcji dyskryminacyjnej ZH. Rachunkowość, nr 5, s. 306–310.
Koralun-Bereźnicka J. (2006), Ocena możliwości wykorzystania wybranych funkcji dyskryminacyjnych w analizie polskich spółek giełdowych. Studia i Prace Kolegium Zarządzania i Finansów. Zeszyt Naukowy 69, SGH w Warszawie, s. 18–28.
Kisielińska J., Waszkowski A. (2015), Zagregowana ocena kondycji finansowej firm z wykorzystaniem polskich modeli upadłości. Ekonomista, nr 5, s. 679-692.
Mączyńska E., Zawadzki M. (2000), Modelowe i prognostyczne aspekty pomiaru zmian w sytuacji przedsiębiorstw i w restrukturyzacji – analiza dyskryminacyjna. Working Papers PZB NR 001-09, Nr 42, Instytut Nauk Ekonomicznych PAN, Warszawa.
Pociecha J., Pawełek B., Baryła M., Augustyn S. (2014), Statystyczne metody prognozowania bankructwa w zmieniającej się koniunkturze gospodarczej. Fundacja Uniwersytetu Ekonomicznego w Krakowie, Kraków.
Pogodzińska M., Sojak S. (1995), Wykorzystanie analizy dyskryminacyjnej w przewidywaniu bankructwa przedsiębiorstw. Acta Universitatis Nicolai Copernici, Ekonomia XXV, Zeszyt 299, Toruń, s. 53‒61.
Stępień P., Strąk T. (2004), Wielowymiarowe modele logitowy oceny zagrożenia bankructwem polskich przedsiębiorstw, W: D. Zarzecki (red.), Zarządzanie finansami: Finansowanie przedsiębiorstw w Unii Europejskiej. Wydawnictwo Uniwersytetu Szczecińskiego, Szczecin, s. 443–452.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.